THREADING

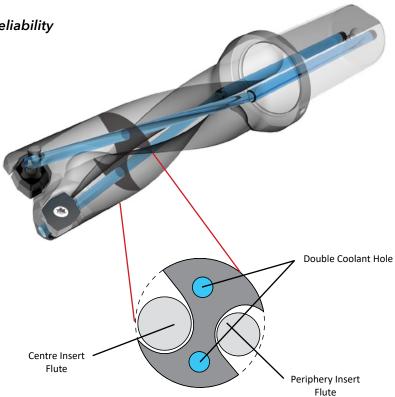
4TEX Drill **Advantages**

Product Overview

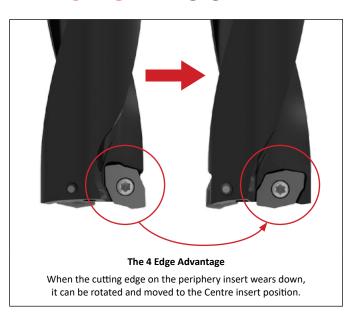
Improved tool holder rigidity and increased reliability provided by the stronger core

Superior chip evacuation provided by the 2 twisted coolant holes

Improved hole size from the stronger core and increased coolant volume

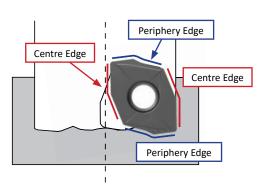

Longer tool life
provided by the 4-sided insert design

Simplified tooling selection with ISO-specific insert geometry/coating combinations


Increased penetration rates due to single effective cutting on light duty machines

STABLE & EFFICIENT

- The 2 twisted coolant holes allow the core to remain intact, making the core thicker and stronger.
- The dual coolant outlets increase the coolant volume, which improves the chip evacuation and improves the hole size.
- The flute space of the internal cutting edge side (where chips get stuck most often) is 1.6x larger than typical IC drills.


LONGER TOOL LIFE

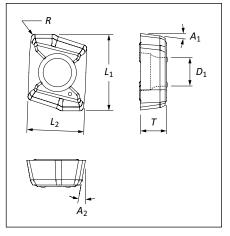
- Each insert has 2 inner cutting edges and 2 outer cutting edges
- Economical solution that increases tool life because of the rotation ability of the inserts
- Available in ISO material-specific geometry/coating combinations

Periphery Insert

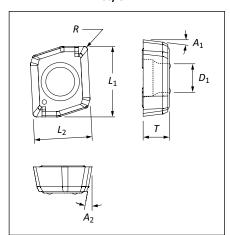
Centre Insert

Centre edge chip formation:

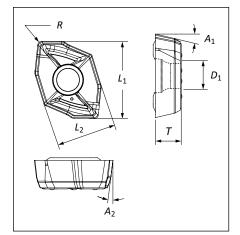
Periphery edge chip formation:


ISO Material	Geometry	Coating	Description
P	General Rake	AM480	A general purpose geometry that provides excellent chip formation in most steels including free machining, medium and high carbon steels. A P30 carbide substrate for improved toughness and AM480 coating, a proprietary wear resistant multi-layer PVD coating to improve tool life.
s M	High Rake	AM485	A higher rake geometry that provides excellent chip formation in both stainless steels and high temperature alloys. A tough M25 carbide substrate coated with AM485, a high heat resistance proprietary multi-layer PVD coating.
K	General Rake	AM480	With a general purpose geometry, the K inserts can be used in grey cast irons as well as ductile irons. A high wear resistant K10 carbide substrate to improve tool life and coated with AM480, a proprietary multi-layer PVD coating to improve resistance against tool wear.
Н	Low Rake	AM480	A low rake geometry to improve edge strength in both hardened tool steels and high strength alloys. With a P30 carbide substrate for improved toughness and coated with AM480, a proprietary multi-layer PVD coating to improve resistance against tool wear.
N	High Rake	TiCN	A higher rake cutting geometry provides excellent chip formation in non-ferrous materials. An M15/K15 carbide substrate paired with TiCN coating for improved lubricity to resist build-up-material, increasing tool life and maintaining chip formation.

В


Insert Information

		Dimension (mm)			Angle				
Series	Insert Prefix	<i>L</i> ₁	L ₂	Т	D_1	R	A ₁	A ₂	Shape
	4T-030203C-x	5.9	4.8	2.30	2.4	0.3	7°	10°	Style 1
03	4T-030203P-x	6.5	4.8	2.30	2.4	0.3	7°	10°	Style 2
04	4T-040203-x	6.2	5.1	2.60	2.4	0.3	13°	10°	
05	4T-05T203-x	7.3	5.5	2.74	2.5	0.3	13°	7°	
06	4T-06T204-x	8.6	6.4	2.89	2.8	0.4	13°	7°	
07	4T-070305-x	10.2	8.0	3.24	3.0	0.5	13°	7°	
09	4T-09T306-x	12.2	9.6	4.03	3.6	0.6	13°	7°	
11	4T-11T306-x	14.5	11.6	4.06	4.6	0.6	13°	7°	Style 3
14	4T-140408-x	18.0	14.4	4.88	5.7	0.8	13°	7°	,



Style 2

Style 3

BORING

Е

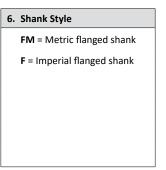
Χ

Product Nomenclature

4TEX Drill Holders

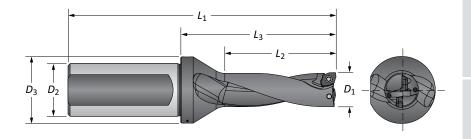
03 1200 2 3

- **20** 5


1. Length to Diameter Ratio			
D2 = 2xD			
D3 = 3xD			
D4 = 4xD			

2. Series	
03 = 03 series	07 = 07 series
04 = 04 series	09 = 09 series
05 = 05 series	11 = 11 series
06 = 06 series	14 = 14 series

3. Diameter		
1200 = 12mm		
0750 = .075"		


4.	4. Diameter Style			
M = Metric				
	I = Imperial			

5. Shank Diameter	
Metric	Imperial
20 = 20mm	075 = .075"
25 = 25mm	100 = 1.000"
32 = 32mm	125 = 1.250"
40 = 40mm	150 = 1.500"

Reference Key

Symbol	Attribute
D ₁	Drill diameter
D ₂	Shank diameter
D ₃	Flange diameter
L ₁	Assembled overall length
L ₂	Drill depth
L ₃	Reference length

